

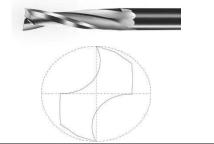
PLEASE - BEFORE YOU TRY IT YOUR WAY, TRY IT OURS!

HYTAC Syntactic Foam Machining Guide

CGP NOW SUPPLIES
CUTTING TOOLS!

HYTAC materials are generally easy to machine, frequently requiring no extra polish or surface preparation. Following the guidelines listed below will improve surface quality of the finished plug and ensure consistency in plug performance.

Cutter Type	•	2 Flute, Plastic Cutting Tools											
	•	 SHARP TOOLS are required. Syntactic foams are abrasive. Check cutting edges and monitor plug surface for evidence of dull tooling. 											
Speed and	Varies by tool geometry and size.												
Feed	Use "Chip Load" (the measurement of thickness of material removed by each cutting edge during a cut)												
	from tooling manufacturer to develop feed rate.												
	Calculate Feed Rate (inches/minute) using the formula:												
	Feed Rate = Chip Load x Spindle RPM x # of flutes.												
	•	 For CMT supplied tools from this guide, the following feed rate calculations apply: 											
	Number shown in bold is feed rate in millimeters/minute.												
	Spindle RPM												
			2500	5000	7500	10000	12,500	15000	17,500	20,000			
		0.002	250	500	750	1000	1250	1500	1750	2000			
		0.003	300	600	900	1200	1500	1800	2100	2400			
		0.0035	350	700	1050	1400	1750	2100	2450	2800			
	ad	0.004	400	800	1200	1600	2000	2400	2800	3200			
) To	0.005	450	900	1350	1800	2250	2700	3150	3600			
	Chip Load	0.006	500	1000	1500	2000	2500	3000	3500	4000			
	\prod	0.007	1000	2000	3000	4000	5000	6000	7000	8000			
		0.009	1500	3000	4500	6000	7500	9000	10500	12000			
Optimization	1.	Experiment	with the n	naximum p	ossible ch	ip size. Use f	eed rate as d	etermined fro	om the chip lo	oad rating and			
techniques		your machin											
		Increase fee		-	_					_			
	3.	3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process.											
		Usage of sep	_	-	-		-			ocition whon			
	4.	part finish d		_	illing allu il	ilisililig allov	vs rotation or	ווווואוו נטטו ווו	to roughing p	osition when			
	5.	Clear remov			nremature	tool wear							
	J.	Cicai remov	ca cmps c	o prevent	prematare	toor wear.							
		NOTE: Too l	ow a feed	rate will	generate e	excess heat a	and reduce to	ol life. Prop	er settings w	ill result in a			
					_			-	or surface fin				
		movement o	luring ma	chining.	-					-			
Coolant	•	None, or air		· · · · · · · · · · · · · · · · · · ·									
Protection	•	For HYTAC-B	1X, FLX, F	LXT, A or E	3: Safety C	Goggles							
	•			T or Rx Se	ries: Enclo	se chip spac	e, dust extrac	tion, safety g	goggles, dust r	mask,			
		protective gl	oves										


HYTAC Syntactic Foam Machining Tools

Double Flute Upcut Spiral

High helix geometry with a special point for upward chip flow, <u>smooth sidewall</u> and improved bottom finish.

Conventional cutting for roughing and finishing is recommended with these tools.

Contact CGP Europe for price and availability. Other sizes may be available upon request.

					Roughing F	Parameters	Finishing Parameters				
Part#	Cutting Diameter	te Length	Shank Diameter	Overall Length	Slotting* RDOC ⁱ = 100% ADOC ⁱⁱ = up to 1xD ⁱⁱⁱ	Profiling* RDOC ⁱ = 100% ADOC ⁱⁱ = up to 1xD ⁱⁱⁱ	Wall . RDOC ⁱ = k ADOC ⁱⁱ = up	elow	Floors* RDOC ⁱ = 40-65% ADOC ⁱⁱ = below		
Par	Cut	Flute	Sha	Õ	Chip load	Chip load	Chip load RDOC ⁱ		Chip load	ADOC ⁱⁱ	
52-742	12mm	35mm	12mm	100mm	.1018mm	.1023mm	.10mm 1mm		.10mm	.4mm	
52-744	12mm	45mm	12mm	100mm	.1018	.1023	.10	1	.10	.4	
52-746	12mm	55mm	12mm	100mm	.1018	.1023	.10	1	.10	.4	
52-752	16mm	45mm	16mm	120mm	.1020	.1025	.1025 .10 1		.10	.5	
52-754	16mm	55mm	16mm	120mm	.1020	.1025	.10 1		.10	.5	
52-764	20mm	65mm	20mm	125mm	.1020	.1025	.13	1.3	.13	.5	

¹ RDOC: Radial Depth of Cut – the depth of the tool along its radius in the work piece as it makes its cut. Parameters referenced as a percentage (%) mean the tool should engage an amount of material equal to the % specified of the tool diameter. Areas referenced with a specific dimension should engage the dimension listed.

ⁱⁱ ADOC: Axial Depth of Cut – the depth of the tool along its axis in the work piece as it makes its cut. Parameters referenced as a percentage (%) mean the amount of material surface cut away will equal the cutting tool diameter at the % specified. Areas referenced with a specific dimension should cut the depth material at the depth dimension listed.

iii D: Cutting Diameter of Tool.

HYTAC Syntactic Foam Machining Tools

High Finish Ball Nose

3D contouring of HYTAC materials. Unique geometry and highly polished surface result in a smooth surface without tool marks.

Conventional cutting is recommended for roughing and finishing with these tools.

Contact CGP Europe for price and availability. Other sizes may be available upon request

available	upon req	juest.							
Part#	Cutting Diameter Flute Length Shank Diameter Overall		Roughing Parameters* RDOC ⁱ = 33% ADOC ⁱⁱ = up to 2xD ⁱⁱⁱ	Finishing Parameters*					
					Chip load	Chip load	RDOC ⁱ	ADOC ⁱⁱ	
65-280B	3mm	12mm	3mm	64mm	.0510mm	.05mm	.0507mm	.13mm	
65-285B	6mm	20mm	6mm	76mm	.0713	.07	.0509	.25	
65-290B	8mm	25mm	8mm	76mm	.0715	.10	.0115	.25	
65-295B	10mm	30mm	10mm	76mm	.0718	.10	.1015	.38	

Tapered Ball Nose

Available with a variety of taper angles and optimized geometry to produce a good edge finish.

Contact CGP Europe for price and availability. Other sizes may be available upon request.

Part#	Cutting Diameter	Flute Length	Shank Diameter	Overall Length	utes	Angle per Side	Radius	Slotting Parameters* RDOC ⁱ = 100%	Profiling Parameters* RDOC ⁱ = 100%
Ра	S E	FI Le	은 I	O Le	ᇤ	Sic	Ra	Chip load	Chip load
77-102M	3mm	39mm	6mm	76mm	3	1 ⁰	1.6mm	.0509mm	.07mm
77-104M	3mm	25mm	6mm	76mm	3	3 ⁰	1.6mm	.0710	.25
77-112M	6mm	50mm	12mm	100mm	2	3 ⁰	3.2mm	.0710	.13
77-114M	6mm	35mm	12mm	100mm	2	5 ⁰	3.2mm	.1013	.15

HYTAC Syntactic Foam Machining Tool Prices

Double Flute Upcut Spiral	High helix with special point geometry for upward chip flow, smooth sidewall and improved bottom finish.										
	Part #	Cutting Diameter	Flute Length	Shank	OAL	Flutes		ort icing	Quantity Requested		
21	52-742	12mm	35mm	12mm	100mm	2	€	116			
	52-744	12mm	45mm	12mm	100mm	2	€	122			
(0.0)	52-746	12mm	55mm	12mm	100mm	2	€	130			
	52-752	16mm	45mm	16mm	120mm	2	€	170			
	52-754	52-754 16mm		16mm	120mm	2	€	174			
	52-764	20mm	65mm	20mm	125mm	2	€	232			

High Finish Ballnose	For 3D contouring of HYTAC materials. Unique geometry and highly polished surface in a solid carbide tool.										
	Part #	Cutting Diameter	Flute Length	Shank	OAL	Flutes		port	Quantity Requested		
1 M	65-280B	3mm	12mm	3mm	64mm	2	€	68			
	65-285B	6mm	20mm	6mm	76mm	2	€	90			
	65-290B	8mm	25mm	8mm	76mm	2	€	99			
	65-295B	10mm	30mm	10mm	76mm	2	€	128			

Tapered Ball Nose		Available with a variety of taper angles and optimized geometry to produce a good edge finish in a wide variety of materials.												
	Part #	Cutting Diameter	Flute Length	Shank	OAL	Flutes	Angle Per Side	Radius		oort cing	Quantity Requested			
M M	77-102M	3mm	39mm	6mm	76mm	3	1	1.6mm	€	74				
	77-104M	3mm	25mm	6mm	76mm	3	3	1.6mm	€	65				
	77-112M	6mm	50mm	12mm	100mm	2	3	3.2mm	€	98				
	77-114M	6mm	35mm	12mm	100mm	2	5	3.2mm	€	96				